依瞳人工智能平台旨在为不同行业的用户提供基于深度学习的端到端解决方案,使用户可以用最快的速度、最少的时间开始高性能的深度学习工作,从而大幅节省研究成本、提高研发效率,同时可为中小企业解决私有云难建成、成本高等问题。 平台融合了Tensorflow、PyTorch、MindSpore等开源深度学习框架,提供了模型训练、超参调优、集群状态监控等开发环境,方便AI开发者快速搭建人工智能开发环境,开展AI开发应用。在监控模块基础上搭建预警模块,自动将平台异常通知管理员,提升平台的预警效率及安全性能。
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
thomas 18a76ed026 upload english user manual 3 months ago
.github/workflows rm un-used action yaml 5 months ago
devenv merge from master 10 months ago
devenv.arm64 merge from master 10 months ago
dlworkspace-compile fix comflict 3 months ago
docs upload english user manual 3 months ago
src fix comflict 3 months ago
.gitattributes update docs 10 months ago
.gitignore fix comflict 3 months ago
.gitmodules add k8x-pom dependance in .gitmodules 9 months ago
DevDocker.md Update installing prerequisities, update document. 3 years ago
Installation_zh.md update install doc 7 months ago
Jenkinsfile modify jenkinsfile image name 4 months ago
LICENSE update license 3 months ago
NOTICE update readme 3 months ago
README.md update license 3 months ago
README_CN.md update license 3 months ago
azure-pipelines.yml init 11 months ago
devenv.py bugfix for docker env 11 months ago
devenv_arm64.py fix arm64 deploy 1 year ago
install_prerequisites.sh merged from microsoft v1.5 1 year ago
version-info improve version example 9 months ago

README.md

build
license
release
docs
python
Gitter

Apulis标志

English|简体中文

Overview

Apulis AI Platform is designed to provide an end-to-end AI solution to users from different industries and enable them to start the high-performance AI development work with significantly reduced ramp up time, thereby saving costs and improving efficiency. It will also provide a highly efficient, low cost private cloud AI solution for small and medium size company.

The platform incorporates TensorFlow, PyTorch, MindSpore and other open source AI frameworks, thereby provides user friendly development environment for AI model training, auto ML, hardware status monitoring etc., making it very easy for AI developers to quickly develop AI application. It also has built-in comprehensive early warning system which can automatically alert the system administrator on any anomaly, thereby improve the platform efficiency and security.

The platform adopts the lightweight virtualization technologies, such as Docker containers that containerizes one or more programs, and provide a standard management interface. Each container is separated from each other. Kubernetes clustering technology is used to orchestrate the containerized applications for planning, automated deployment, updates, and maintenance..

Directory Structure

|-- devenv                          Dockerfile for creating dev environment on amd64 arch
|-- devenv.arm64                    Dockerfile for creating dev environment on arm64 arch
|-- docs
|   |-- deployment
|   `-- tutorial
|-- example
|   `-- resnet50_cifar10
|-- License
`-- src
    |-- ARM
    |-- ClusterBootstrap            deployment module
    |-- ClusterManager              main backend module
    |-- ClusterPortal
    |-- Jobs_Templete               AI Job template
    |-- RepairManager               Alert module
    |-- RestAPI                     API module
    |-- StorageManager
    |-- WebUI                       Frontend module
    |-- WebUI2
    |-- dashboard
    |-- dev-utils		    
    |-- docker-images               Miscellaneus components          
    |-- init-scripts                Initialization scripts for AI jobs
    |-- user-dashboard
    |-- user-synchronizer
    `-- utils                       utility module

License

The entire codebase is under MIT license