|
- # coding=utf-8
- # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ OpenAI GPT-2 configuration"""
- from collections import OrderedDict
- from typing import Any, List, Mapping, Optional
-
- from transformers import PreTrainedTokenizer, TensorType, is_torch_available
- from transformers.configuration_utils import PretrainedConfig
- from transformers.onnx import OnnxConfigWithPast, PatchingSpec
- from transformers.utils import logging
-
-
- logger = logging.get_logger(__name__)
-
- Mind_PRETRAINED_CONFIG_ARCHIVE_MAP = {
- "Mind": "https://huggingface.co/Mind/resolve/main/config.json",
- "Mind-medium": "https://huggingface.co/Mind-medium/resolve/main/config.json",
- "Mind-large": "https://huggingface.co/Mind-large/resolve/main/config.json",
- "Mind-xl": "https://huggingface.co/Mind-xl/resolve/main/config.json",
- "distilMind": "https://huggingface.co/distilMind/resolve/main/config.json",
- }
-
-
- class MindConfig(PretrainedConfig):
- """
- This is the configuration class to store the configuration of a [`MindModel`] or a [`TFMindModel`]. It is used to
- instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the GPT-2
- [Mind](https://huggingface.co/Mind) architecture.
-
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
-
-
- Args:
- vocab_size (`int`, *optional*, defaults to 50257):
- Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`MindModel`] or [`TFMindModel`].
- n_positions (`int`, *optional*, defaults to 1024):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- n_embd (`int`, *optional*, defaults to 768):
- Dimensionality of the embeddings and hidden states.
- n_layer (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- n_head (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- n_inner (`int`, *optional*, defaults to None):
- Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
- activation_function (`str`, *optional*, defaults to `"gelu"`):
- Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
- resid_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- embd_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the embeddings.
- attn_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention.
- layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
- The epsilon to use in the layer normalization layers.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- summary_type (`string`, *optional*, defaults to `"cls_index"`):
- Argument used when doing sequence summary, used in the models [`MindDoubleHeadsModel`] and
- [`TFMindDoubleHeadsModel`].
-
- Has to be one of the following options:
-
- - `"last"`: Take the last token hidden state (like XLNet).
- - `"first"`: Take the first token hidden state (like BERT).
- - `"mean"`: Take the mean of all tokens hidden states.
- - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- - `"attn"`: Not implemented now, use multi-head attention.
- summary_use_proj (`bool`, *optional*, defaults to `True`):
- Argument used when doing sequence summary, used in the models [`MindDoubleHeadsModel`] and
- [`TFMindDoubleHeadsModel`].
-
- Whether or not to add a projection after the vector extraction.
- summary_activation (`str`, *optional*):
- Argument used when doing sequence summary. Used in for the multiple choice head in
- [`MindDoubleHeadsModel`].
-
- Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
- summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
- Argument used when doing sequence summary, used in the models [`MindDoubleHeadsModel`] and
- [`TFMindDoubleHeadsModel`].
-
- Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
- summary_first_dropout (`float`, *optional*, defaults to 0.1):
- Argument used when doing sequence summary, used in the models [`MindDoubleHeadsModel`] and
- [`TFMindDoubleHeadsModel`].
-
- The dropout ratio to be used after the projection and activation.
- scale_attn_weights (`bool`, *optional*, defaults to `True`):
- Scale attention weights by dividing by sqrt(hidden_size)..
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models).
- scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
- Whether to additionally scale attention weights by `1 / layer_idx + 1`.
- reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
- Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
- dot-product/softmax to float() when training with mixed precision.
-
- Example:
-
- ```python
- >>> from transformers import MindConfig, MindModel
-
- >>> # Initializing a Mind configuration
- >>> configuration = MindConfig()
-
- >>> # Initializing a model (with random weights) from the configuration
- >>> model = MindModel(configuration)
-
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
-
- model_type = "Mind"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {
- "hidden_size": "n_embd",
- "max_position_embeddings": "n_positions",
- "num_attention_heads": "n_head",
- "num_hidden_layers": "n_layer",
- }
-
- def __init__(
- self,
- vocab_size=50257,
- n_positions=1024,
- n_embd=768,
- n_layer=12,
- n_head=12,
- n_inner=None,
- activation_function="silu",
- resid_pdrop=0.1,
- embd_pdrop=0.1,
- attn_pdrop=0.1,
- layer_norm_epsilon=1e-5,
- initializer_range=0.02,
- summary_type="cls_index",
- summary_use_proj=True,
- summary_activation=None,
- summary_proj_to_labels=True,
- summary_first_dropout=0.1,
- scale_attn_weights=True,
- use_cache=True,
- bos_token_id=50256,
- eos_token_id=50256,
- scale_attn_by_inverse_layer_idx=False,
- reorder_and_upcast_attn=False,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.n_positions = n_positions
- self.n_embd = n_embd
- self.n_layer = n_layer
- self.n_head = n_head
- self.n_inner = n_inner
- self.activation_function = activation_function
- self.resid_pdrop = resid_pdrop
- self.embd_pdrop = embd_pdrop
- self.attn_pdrop = attn_pdrop
- self.layer_norm_epsilon = layer_norm_epsilon
- self.initializer_range = initializer_range
- self.summary_type = summary_type
- self.summary_use_proj = summary_use_proj
- self.summary_activation = summary_activation
- self.summary_first_dropout = summary_first_dropout
- self.summary_proj_to_labels = summary_proj_to_labels
- self.scale_attn_weights = scale_attn_weights
- self.use_cache = use_cache
- self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
- self.reorder_and_upcast_attn = reorder_and_upcast_attn
-
- self.bos_token_id = bos_token_id
- self.eos_token_id = eos_token_id
-
- super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
-
-
- class MindOnnxConfig(OnnxConfigWithPast):
- def __init__(
- self,
- config: PretrainedConfig,
- task: str = "default",
- patching_specs: List[PatchingSpec] = None,
- use_past: bool = False,
- ):
- super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
- if not getattr(self._config, "pad_token_id", None):
- # TODO: how to do that better?
- self._config.pad_token_id = 0
-
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
- if self.use_past:
- self.fill_with_past_key_values_(common_inputs, direction="inputs")
- common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
- else:
- common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
-
- return common_inputs
-
- @property
- def num_layers(self) -> int:
- return self._config.n_layer
-
- @property
- def num_attention_heads(self) -> int:
- return self._config.n_head
-
- def generate_dummy_inputs(
- self,
- tokenizer: PreTrainedTokenizer,
- batch_size: int = -1,
- seq_length: int = -1,
- is_pair: bool = False,
- framework: Optional[TensorType] = None,
- ) -> Mapping[str, Any]:
- common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
- tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
- )
-
- # We need to order the input in the way they appears in the forward()
- ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
-
- # Need to add the past_keys
- if self.use_past:
- if not is_torch_available():
- raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
- else:
- import torch
-
- batch, seqlen = common_inputs["input_ids"].shape
- # Not using the same length for past_key_values
- past_key_values_length = seqlen + 2
- past_shape = (
- batch,
- self.num_attention_heads,
- past_key_values_length,
- self._config.hidden_size // self.num_attention_heads,
- )
- ordered_inputs["past_key_values"] = [
- (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
- ]
-
- ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
- if self.use_past:
- mask_dtype = ordered_inputs["attention_mask"].dtype
- ordered_inputs["attention_mask"] = torch.cat(
- [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
- )
-
- return ordered_inputs
-
- @property
- def default_onnx_opset(self) -> int:
- return 13
|