|
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- """Pretrain GPT2"""
-
- import torch
-
- from megatron import get_args
- from megatron import print_rank_0
- from megatron import get_timers
- from megatron import get_tokenizer
- from megatron import mpu
- from megatron.data.gpt2_dataset import build_train_valid_test_datasets
- from megatron.model import GPT2Model
- from megatron.training import pretrain
- from megatron.utils import get_ltor_masks_and_position_ids
- from megatron.utils import reduce_losses
-
- def model_provider():
- """Build the model."""
-
- print_rank_0('building GPT2 model ...')
- model = GPT2Model(num_tokentypes=0, parallel_output=True)
-
- return model
-
-
- def get_batch(data_iterator):
- """Generate a batch"""
- args = get_args()
- tokenizer = get_tokenizer()
-
- # Items and their type.
- keys = ['text']
- datatype = torch.int64
-
- # Broadcast data.
- if data_iterator is not None:
- data = next(data_iterator)
- else:
- data = None
- data_b = mpu.broadcast_data(keys, data, datatype)
-
- # Unpack.
- tokens_ = data_b['text'].long()
- labels = tokens_[:, 1:].contiguous()
- tokens = tokens_[:, :-1].contiguous()
-
- # Get the masks and postition ids.
- attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
- tokens,
- tokenizer.eod,
- args.reset_position_ids,
- args.reset_attention_mask,
- args.eod_mask_loss)
-
- return tokens, labels, loss_mask, attention_mask, position_ids
-
-
- def forward_step(data_iterator, model):
- """Forward step."""
- args = get_args()
- timers = get_timers()
-
- # Get the batch.
- timers('batch generator').start()
- tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator)
- timers('batch generator').stop()
- # Forward model.
- losses = model(tokens, position_ids, attention_mask, labels=labels)
- loss_mask = loss_mask.view(-1)
- loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
-
- # Reduce loss for logging.
- reduced_loss = reduce_losses([loss])
-
- return loss, {'lm loss': reduced_loss[0]}
-
-
- def train_valid_test_datasets_provider(train_val_test_num_samples):
- """Build train, valid, and test datasets."""
- args = get_args()
-
- print_rank_0('> building train, validation, and test datasets for GPT2 ...')
- train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
- data_prefix=args.data_path,
- data_impl=args.data_impl,
- splits_string=args.split,
- train_valid_test_num_samples=train_val_test_num_samples,
- seq_length=args.seq_length,
- seed=args.seed,
- skip_warmup=(not args.mmap_warmup))
- print_rank_0("> finished creating GPT2 datasets ...")
-
- return train_ds, valid_ds, test_ds
-
-
- if __name__ == "__main__":
-
- pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
- args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
|