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01 Introduction



Introduction '

Multi-Task Learning

Learn multiple tasks simultaneously

Use the knowledge learned in a task to help the
learning of another task

play squash




Introduction '
Multi-Task Learning

Learn multiple related tasks jointly

!

The knowledge contained in a task
can be leveraged by other tasks

!

Improve the generalization
performance of all the tasks

Multl Task Lea rnlng

Training Data
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Introduction

Multi-Task Learning in Natural Language Processing
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Multi-Task Learning in Natural Language Processing: An Overview

Shijie Chen, Yu Zhang, Qiang Yang

Deep learning approaches have achieved great success in the field of Natural Language Processing (NLP). However, deep neural models often suffer from overfitting and data scarcity problems that
are pervasive in NLP tasks. In recent years, Multi-Task Learning (MTL), which can leverage useful information of related tasks to achieve simultaneous performance improvement on multiple related
tasks, has been used to handle these problems. In this paper, we give an overview of the use of MTL in NLP tasks. We first review MTL architectures used in NLP tasks and categorize them into four
classes, including the parallel architecture, hierarchical architecture, modular architecture, and generative adversarial architecture. Then we present optimization techniques on loss construction, data
sampling, and task scheduling to properly train a multi-task model. After presenting applications of MTL in a variety of NLP tasks, we introduce some benchmark datasets. Finally, we make a

conclusion and discuss several possible research directions in this field.

Subjects: Artificial Intelligence (cs.Al)
Cite as: arXiv:2109.09138 [cs.Al]
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Shijie Chen, Yu Zhang, Qiang Yang. Multi-Task Learning in Natural Language Processing: An Overview.
arXiv:2109.09138, 2021.



Introduction .

Feature transformation approach Task clustering approach
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Feature selection approach Multi-task Decomposition approach
learning models

Low-rank approach Task relation learning approach

Yu Zhang and Qiang Yang, A Survey on Multi-Task Learning, IEEE TKDE 2021
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Low-rank approach

Relatedness among multiple tasks
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Low-rank approach

Matrix parameters ‘ Matrix trace norm

Multi-task

Image R G B ‘ Tensor trace norm

8x8 8x8 8x8

Multi-class classification
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Latent tensor trace norms
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Tucker Trace Norm LAF Trace Norm

Overlapped tensor
trace norms

Tensor-Ring (TR) Trace Norm
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Existing tensor trace norms

Tucker Trace Norm
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Existing tensor trace norms

TT Trace Norm

4-way tensor
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Existing tensor trace norms

LAF Trace Norm

4-way tensor
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Existing tensor trace norms

4-way tensor
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Generalized Tensor Trace Norm (GTTN)

A h 4 b

How to choose the way of tensor
flattening?

@ Try all possible ways of
tensor flattening.

Given the way of tensor flattening, how
to determine the importance of resultant
tensor flattenings?

Learn Weights:
@ Variable

€ Minimum

¢ Maximum

€ Meta-learning




Generalized Tensor Trace Norm (GTTN)

How to choose the way of tensor flattening?
‘ Try all possible ways of tensor flattening
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: Comparison among the Tucker trace norm, TT trace
Generalized Tensor Trace Norm (GTTN) norm, LAF trace norm, TR trace norm with d=2, and

GTTN for a 4-way tensor.
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Generalized Tensor Trace Norm (GTTN)

How to determine a?

View «a as variables Optimize maximum matrix
to be optimized trace norm

Learn Weights

Optimize minimum . _




Generalized Tensor Trace Norm (GTTN)

Learning Weights

Viewing «a as variables to be optimized

man l(fl( @) y])+Alea Wall. silas = 0,2 saa= 1

softmax function
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Generalized Tensor Trace Norm (GTTN)

Learning Weights

Optimizing minimum matrix trace norm
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Generalized Tensor Trace Norm (GTTN)

Learning Weights

Optimizing maximum matrix trace norm
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Pay attention to flattenings with the largest trace norm
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Penalize all the matrix trace norm



Generalized Tensor Trace Norm (GTTN)

Learning Weights

Meta-learning method
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Generalized Tensor Trace Norm (GTTN)

Objective function

Given the Generalized Tensor Trace Norm (GTTN), the objective function of the deep
multi-task model can be expressed as:

mi "; l(fl(x@.

Empirical loss Regularlzatlon term: GTTN




Generalized Tensor Trace Norm (GTTN)

THEOREM 2. For the solution W of problem (8) and 6 > 0, with
probability at least 1 — 0, we have
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EXxperiments .

‘l DMTL  Deep Multi-Task Learning method

Tucker  The Tucker trace norm method
TT The TT trace norm method
LAF The LAF trace norm method

LAF-i  The trace norm regularization method based on the i-th axis flattening

TR TR trace norm method (d = 2)
LAF-TF LAF tensor factorization method
Prod The rank-product regularization method

GTTN-a Setting the weights in GTTN to be same
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ImageCLEF
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Experiments

Results: fc7 layer
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Results: pool5 layer
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Comparison on Strategies to Learn Weights
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Analysis on Learned Weights
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EXxperiments

Sensitivity Analysis
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The performance is not sensitive to A number of hidden units = 512, d=6




Conclusion '

® The generalized tensor trace norm (GTTN) to capture all the low-rank is
effective.

® |earning weights of each tensor flattening to identify the importance of

each structure is helpful.

® The GTTN method performs better than baseline methods.
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