

神经网络剪枝方法概述

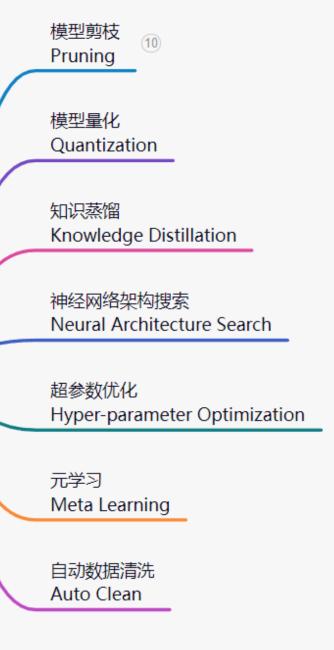
与混合剪模方法介绍

报告人: 吴宇航

报告时间: 2021.12.1

--- 前言

深度神经网络被广泛应用于计算机视觉、 自然语言处理、推荐搜索等领域。其模 型内部大量有待训练的权重占用了大量 的内存空间,给深度神经网络在一些嵌 入式平台、移动端上的部署带来了很大 的困难。此外,庞大的计算量也能耗巨 大, 计算成本昂贵。在模型轻量化需求 催化下,模型压缩技术应运而生。其主 要目标就是在尽可能不牺牲模型精度 (甚至在一些场景能提升精度) 的前提 下,减小模型的内存与算力消耗。



AutoML与 模型压缩

> 自动特征工程 Auto Feature Engineering

■■■ 目录 Contents

- 口剪枝粒度
- 口剪枝方法
- 口混合搜索剪枝方法

剪枝粒度

Irregular Regular

Unstructured Pruning (Sparsity)

(Fine-grained 0-D)

Stripe-wise/ Group-wise Pruning

(Vector-level 1-D)

Pattern Pruning

Connectivity Pruning

(Kernel-level 2-D)

Structured Pruning (Channel Pruning, Filter Pruning)

(Filter-level 3-D)

剪枝粒度 Unstructured Pruning (Sparsity)

Input Channels

3*3 Conv: (C_out, C_in, k_H, k_W)= (4,4,3,3)

剪枝粒度为单个权重数值 每个卷积核里的某些权重 置为0,且数量不定,只 有每层的稀疏率, 不容易进行硬件加速,需 要定制硬件支持。 Output Channels

■■ 剪枝粒度 Stripe-wise/ Group-wise Pruning

Input Channels

3*3 Conv:

 $(C_{out}, C_{in}, k_H, k_W) = (4,4,3,3)$

剪枝粒度为卷积参数张量 中伸展方向为输入或输出 维度的一些向量。

需要特殊设计的硬件,例 如 NVIDIA A100。

Output Channels

剪枝粒度 Stripe-wise/ Group-wise Pruning

For conv layer (N,C,H,W)

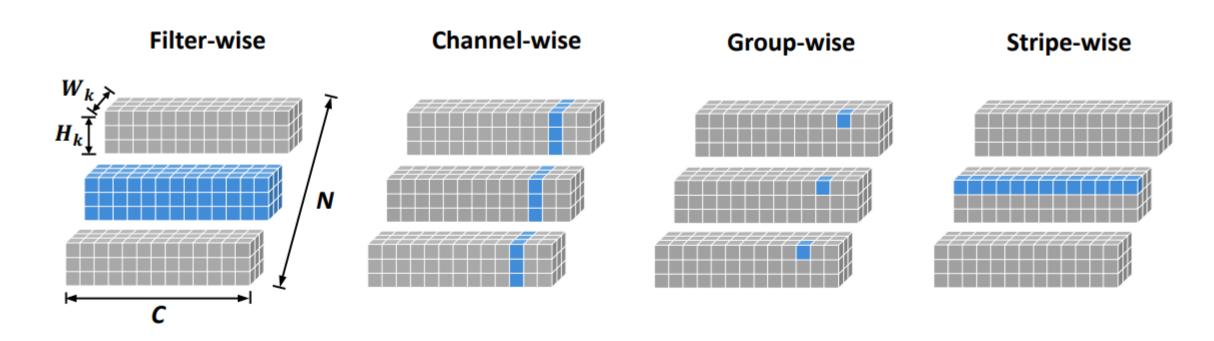


Figure 2: The visualization of different types of pruning.

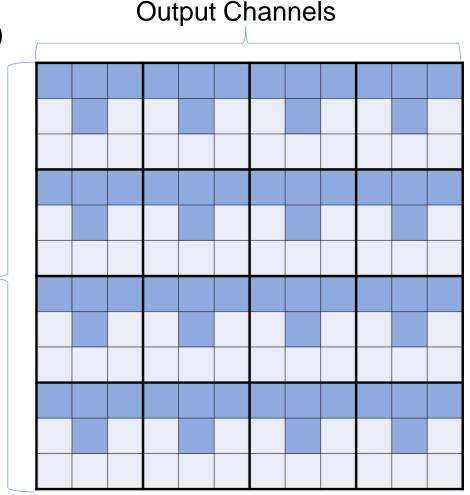
■ 剪枝粒度 Pattern Pruning

nput Channels

3*3 Conv: (C_out, C_in, k_H, k_W)= (4,4,3,3)

剪枝粒度为一组固定模式 (位置)的权重,卷积核 固定位置的权重置为0, 一般一个模式的适用范围 为一层或整个模型。

有论文(Patdnn)提出了可以进行模式剪枝硬件加速的计算框架。



保留删除

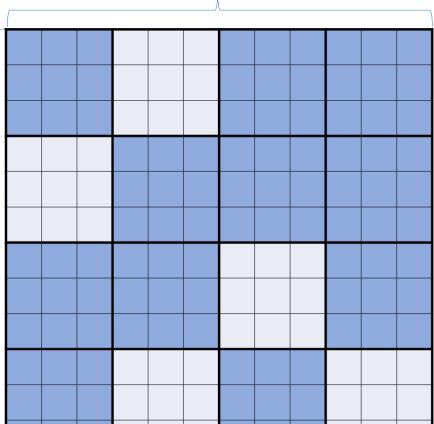
Niu, Wei, et al. "Patdnn: Achieving real-time dnn execution on mobile devices with pattern-based weight pruning." Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. 2020.

■ 剪枝粒度 Connectivity Pruning

nput Channels

3*3 Conv: $(C_{out}, C_{in}, k_H, k_W) = (4,4,3,3)$

剪枝粒度为卷积核,是不 定位置的卷积核,被剪枝 的卷积核所有权重置为0。 相对于稀疏来说比较容易 进行硬件加速,仍需要编 译器的专门优化才能加速。 **Output Channels**



保留 删除

■ 剪枝粒度 Structured Pruning (Channel/ Filter Pruning)

3*3 Conv:

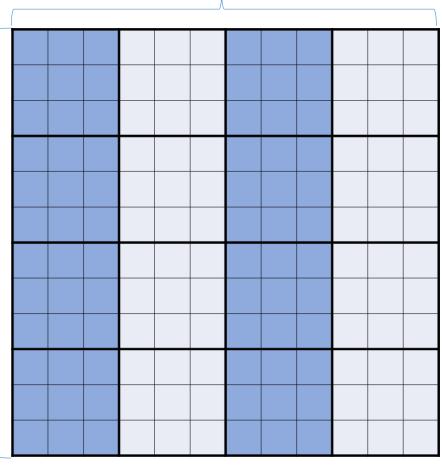
 $(C_{out}, C_{in}, k_H, k_W) = (4,4,3,3)$

Input Channels

剪枝粒度为一组通道的卷 积核,相当于直接改变了 模型的宽度。

不需要任何特殊改造就可以有加速效果,在CPU上效果更显著。

Output Channels



保留删除

剪枝粒度

Irregular Regular

Unstructured Pruning (Sparsity)

(Fine-grained 0-D)

Stripe-wise/ Group-wise Pruning

(Vector-level 1-D)

Pattern Pruning

Connectivity Pruning

(Kernel-level 2-D)

Structured Pruning (Channel Pruning, Filter Pruning)

(Filter-level 3-D)

■■■ 目录 Contents

- 口剪枝粒度
- 口剪枝方法
- 口混合搜索剪枝方法

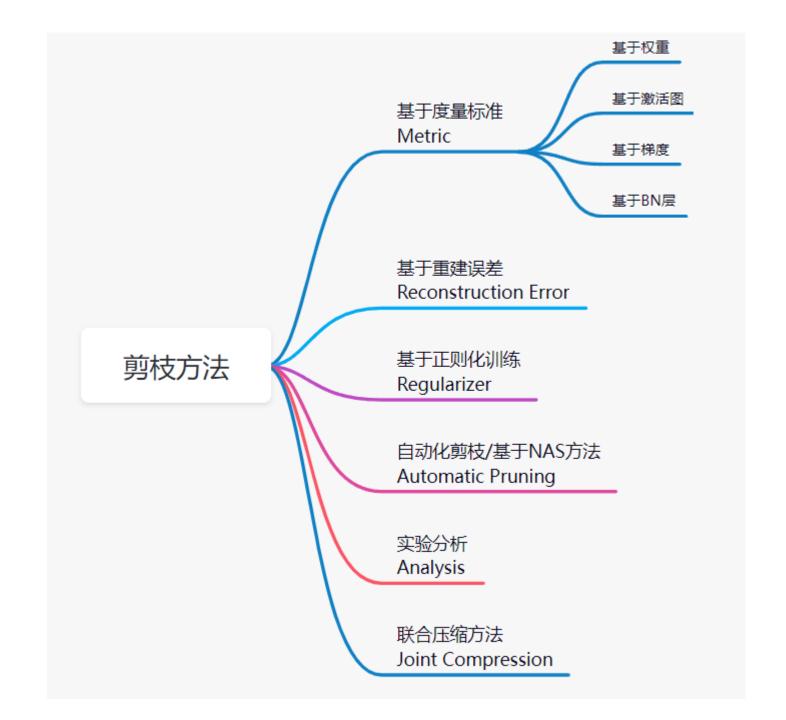
■■ 剪枝方法

模型剪枝:

- 给出剪枝单元的重要性
- 按一定比例把不重要的单元剪掉
- 得到满足约束的小模型

如何给出重要性?两方面:

- 1. 模型本身结构
- 2. 模型的训练/使用流程



■■■ 剪枝方法 基于度量标准 – 权重

经典方法: L1剪枝 Pruning Filters for Efficient ConvNets ICLR 2017

剪枝粒度: Channel pruning

剪枝过程:

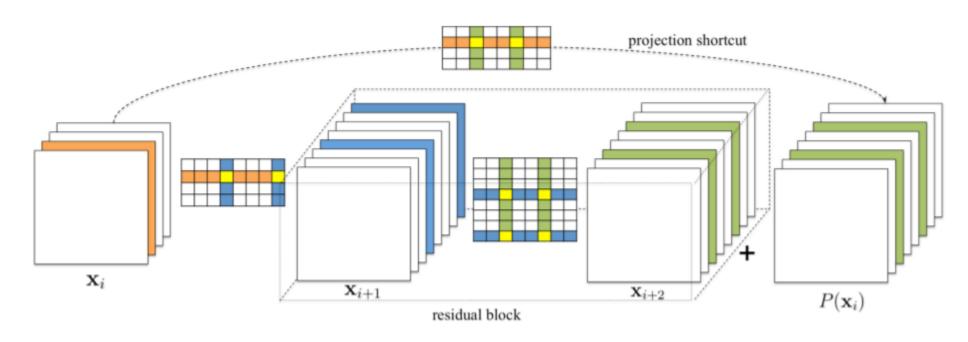
• 计算 Filter 中所有权值的绝对值(L1范数)之和

• 根据求和大小排列 Filter

• 删除数值较小的 Filter (权重数值越小,代表权重的重要性越弱)

• 对删除之后的 Filter 重新组合, 生成新Filter矩阵

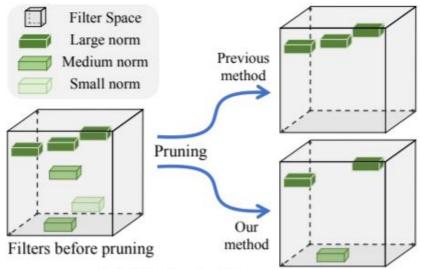
确立复杂结构剪枝原则: 对当前操作在计算图中的 **后继节点的所有前驱节点,** 按照同一个剪枝Recipt进行操作



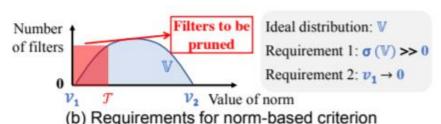
■ 剪枝方法 基于度量标准 – 权重

经典方法: FPGM 几何中心剪枝 **CVPR 2019**

剪枝粒度: Channel pruning



(a) Criterion for filter pruning



Filter Pruning via Geometric Median for Deep Convolutional Neural Network Acceleration

Motivation: 基于范数进行剪枝的方法,会遇到参数分布 与先验分布差异大的情况,

Metric: 滤波器与几何中心的距离

```
Algorithm 1 Algorithm Description of FPGM
```

```
Input: training data: X.
 1: Given: pruning rate P_i
 2: Initialize: model parameter \mathbf{W} = {\mathbf{W}^{(i)}, 0 \le i \le L}
 3: for epoch = 1; epoch \leq epoch_{max}; epoch + + do
        Update the model parameter W based on X
       for i = 1; i < L; i + + do
            Find N_{i+1}P_i filters that satisfy Equation 6
            Zeroize selected filters
        end for
 9: end for
```

Output: The compact model and its parameters W*

10: Obtain the compact model W* from W

■■ 剪枝方法 基于重建误差

经典方法: ThiNet

剪枝粒度: Channel pruning

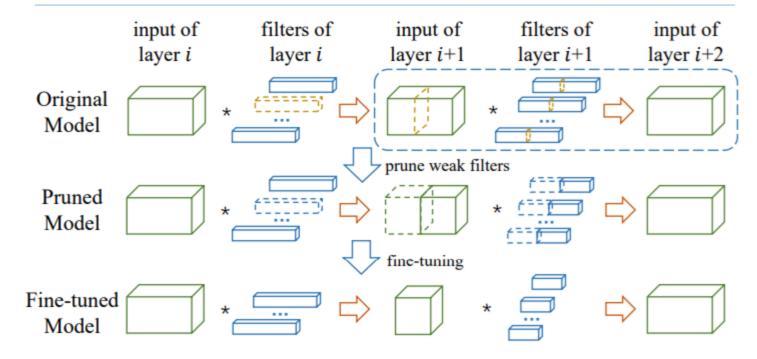
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression ICCV2017

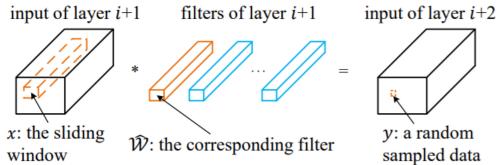
卷积可表示为:

$$y = \sum_{c=1}^{C} \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \widehat{\mathcal{W}}_{c,k_1,k_2} \times x_{c,k_1,k_2} + b.$$

优化目标:

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{m} \left(\hat{y}_i - \sum_{j \in S} \mathbf{\hat{x}}_{i,j} \right)^2$$
s.t. $|S| = C \times r, \quad S \subset \{1, 2, \dots, C\}.$





Algorithm 1 A greedy algorithm for minimizing Eq. 6

```
Input: Training set \{(\hat{\mathbf{x}}_i, \hat{y}_i)\}, and compression rate r

Output: The subset of removed channels: T

1: T \leftarrow \emptyset; I \leftarrow \{1, 2, \dots, C\};

2: while |T| < C \times (1 - r) do

3: min\_value \leftarrow +\infty;

4: for each item i \in I do

5: tmpT \leftarrow T \cup \{i\};

6: compute value from Eq. 6 using tmpT;

7: if value < min\_value then

8: min\_value \leftarrow value; min\_i \leftarrow i;

9: end if

10: end for

11: move min\_i from I into T;

12: end while
```

■■■ 剪枝方法 自动化剪枝

经典方法: AMC

AMC: AutoML for Model Compression and Acceleration on

Mobile Devices ECCV2018

剪枝粒度: Channel pruning

强化学习结构:

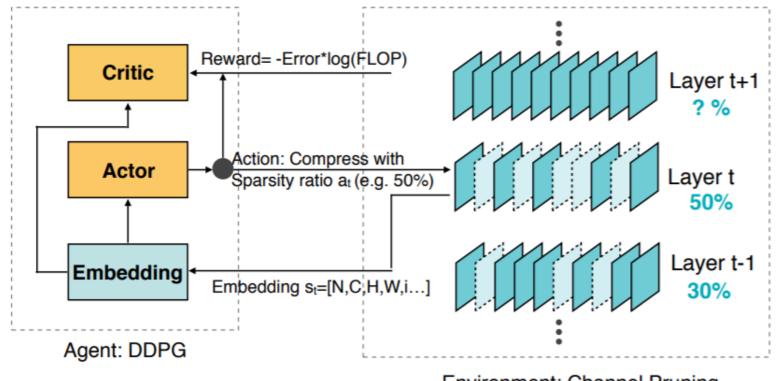
Actor-Critic

奖励函数设计:

- R=-Error*log(FLOP)
- 在精度损失时惩罚
- 在模型缩小和加速时奖励

梯度更新: DDPG

状态空间:



[申]. Environment: Channel Pruning

 $(t, n, c, h, w, stride, k, FLOPs[t], reduced, rest, a_{t-1})$

■■■ 剪枝方法 NAS方法

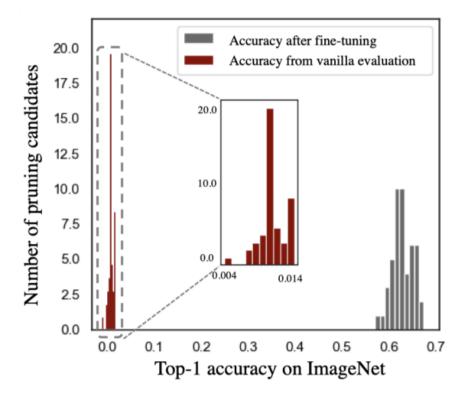
SOTA方法: EagleEye

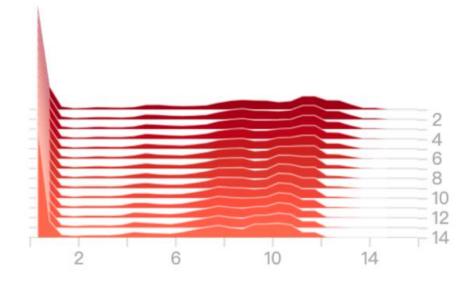
剪枝粒度: Channel pruning

EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning ECCV 2020

Motivation: 通道剪枝后的模型,准确度下降剧烈,如下图,而Finetune后精度快速回升,但

Finetune开销大,能否找到一种方法快速对剪枝后的子模型进行模型表现排序的评估





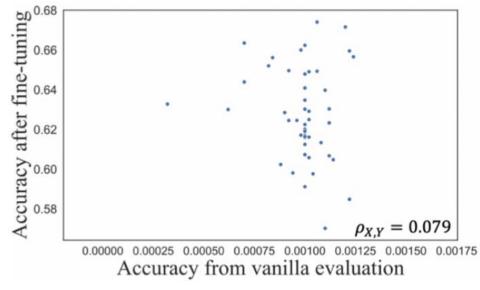
随着Finetune的进行,权重L1范数分布变化

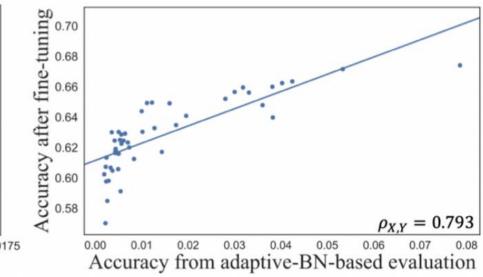
■■■ 剪枝方法 NAS方法

SOTA方法: EagleEye

EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning ECCV 2020

提出Adaptive-BN: 剪枝后子模型不进行 finetune,而是**通过** 几个batch的数据更 新BN的参数。





原BN层:

$$y = \gamma \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta,$$

统计量的更新:

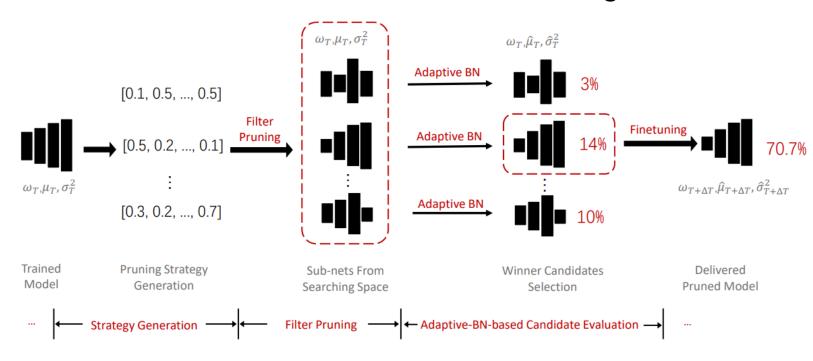
$$\mu_{\mathcal{B}} = E[x_{\mathcal{B}}] = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad \sigma_{\mathcal{B}}^2 = Var[x_{\mathcal{B}}] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_{\mathcal{B}})^2.$$

$$\mu_t = m\mu_{t-1} + (1-m)\mu_{\mathcal{B}}, \quad \sigma_t^2 = m\sigma_{t-1}^2 + (1-m)\sigma_{\mathcal{B}}^2,$$

■■ 剪枝方法 NAS方法

SOTA方法: EagleEye

EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning ECCV 2020



Method	FLOPs	Top1-Acc
$0.75 \times MobileNetV1$ [9]	325M	68.4%
AMC [7]	285M	70.5%
NetAdapt [26]	284M	69.1%
Meta-Pruning [20]	281M	70.6%
EagleEye	284M	70.9%

Fig. 6. Workflow of the EagleEye Pruning Algorithm

■ 剪枝方法 联合压缩方法

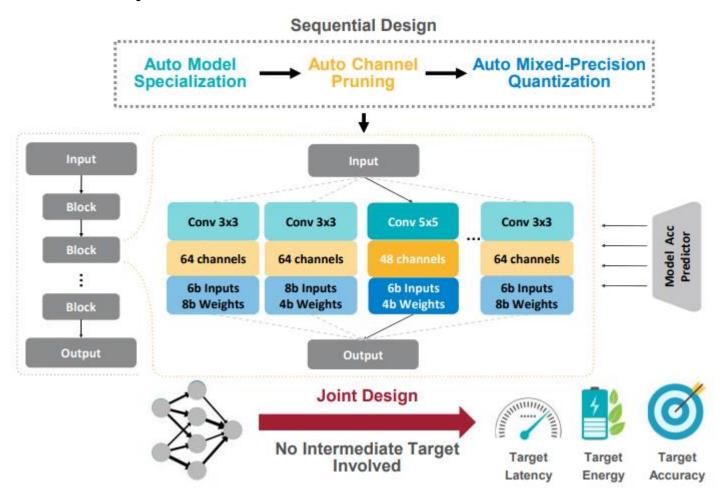
SOTA方法: APQ

APQ: Joint Search for Network Architecture, Pruning and

Quantization Policy 剪枝粒度: Channel pruning

模型的部署分为 模型结构设计

(Architecture),剪枝 (Pruning) 量化(Quantization)三个步骤。本文 提出一种将这三个步骤联合进行端到 端搜索的方法。该论文基于OFA框架。

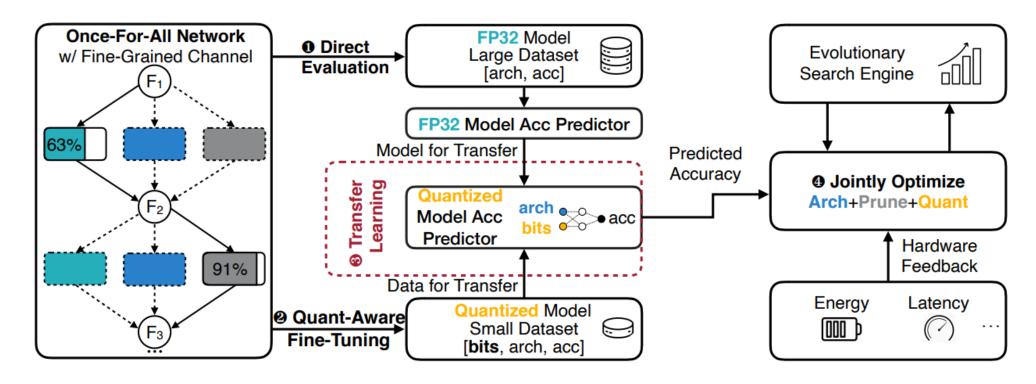


■■■ 剪枝方法 联合压缩方法

SOTA方法: APQ APQ: Joint Search for Network Architecture, Pruning and

剪枝粒度: Channel pruning Quantization Policy

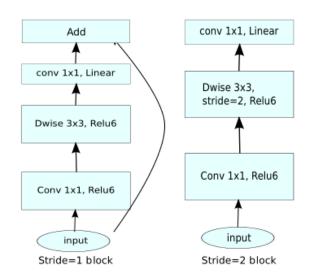
流程图: 在OFA基础上进行联合压缩



主要包括三个部件: OFA超网, 量化精度预测器, 进化搜索引擎

剪枝方法 联合压缩方法

OFA介绍



(d) Mobilenet V2

搜索空间: Supernet 搜索方法: Oneshot

评估方法: Weight-sharing

Once-for-All: Train One Network and Specialize it for Efficient Deployment

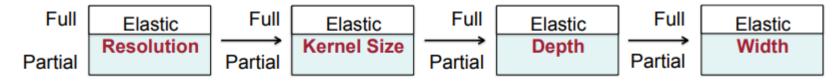
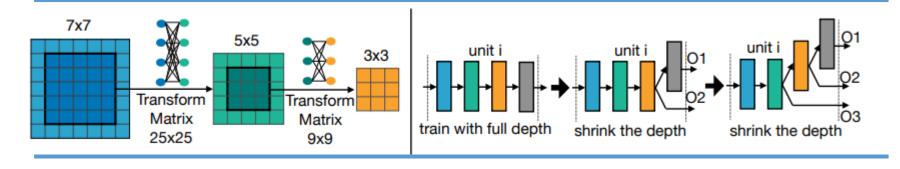
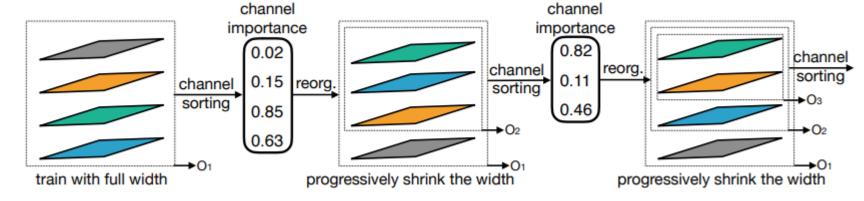


Figure 3: Illustration of the progressive shrinking process to support different depth D, width W, kernel size K and resolution R. It leads to a large space comprising diverse sub-networks (> 10^{19}).



Width Expand_ratio = $\{3,4,6\}$



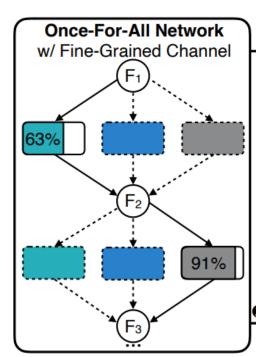
■■■ 剪枝方法 联合压缩方法

SOTA方法: APQ

关于剪枝: 提出 Fine-grained

原OFA的宽度选项: {3,4,6}*256

Fine-grained宽度: [768,776,...,1536]

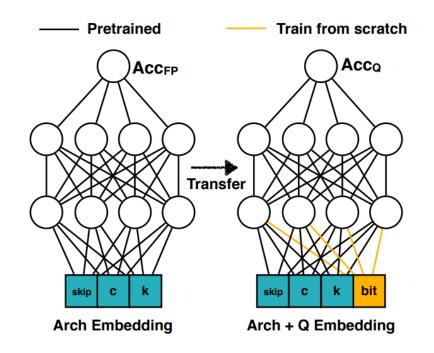


关于量化: 混合精度量化比特数 {4,8},量化公式为:

$$w' = \max(0, \min(2v, round(\frac{2w}{2^b - 1}) \cdot v)) - v$$

如何训练? 使用量化预测器,三层MLP网络

- 1. 在超网训练完成后,采样出 <arch,acc>结构精度对,组成全精度训练集 A
- 2. MLP在 A 上训练
- 3. 采样出 <bits,arch,acc> 数据集 B
- 4. MLP在**B**上进行Finetune



■■ 剪枝方法 联合压缩方法

SOTA方法: APQ

APQ: Joint Search for Network Architecture, Pruning and

剪枝粒度: Channel pruning Quantization Policy

Algorithm 1: APQ framework

Input: Pretrained once-for-all network S, evolution round iterMax, population size N, mutation rate prob, architecture constraints C.

- 1 Use S to generate FP32 model dataset \mathcal{D}_{FP} (arch, acc) and quantized model dataset \mathcal{D}_{MP} (quantization policy, arch, acc).
- 2 Use \mathcal{D}_{FP} to train a full precision (FP) accuracy predictor \mathcal{M}_{FP} .
- 3 Use \mathcal{D}_{MP} and \mathcal{M}_{FP} (pretrained weight to transfer) to train a mixed precision (MP) accuracy predictor \mathcal{M}_{MP} .
- 4 Randomly generate initial population \mathcal{P} (quantization policy, arch) with size N satisfying C.
- 5 for $i = 1 \dots iterMax$ do
- 6 Use \mathcal{M}_{MP} to predict accuracy for candidates in \mathcal{P} and update Top_k with the candidates having Top k highest accuracy.
- 7 $\mathcal{P}_{crossover} = \text{Crossover}(\text{Top}_k, N/2, C)$
- 8 $\mathcal{P}_{mutation} = \text{Mutation}(\text{Top}_k, N/2, prob, C)$
- 9 $\mathcal{P} = \mathcal{P} \cup \mathcal{P}_{crossover} \cup \mathcal{P}_{mutation}$

Output: Candidate with best accuracy in Top_k .

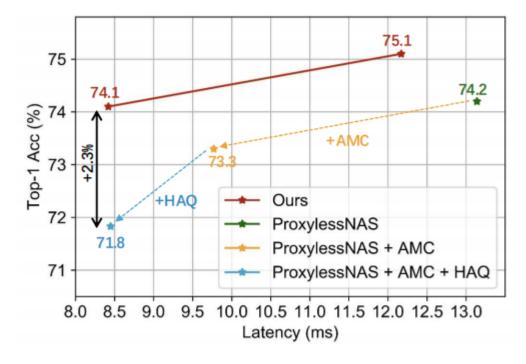
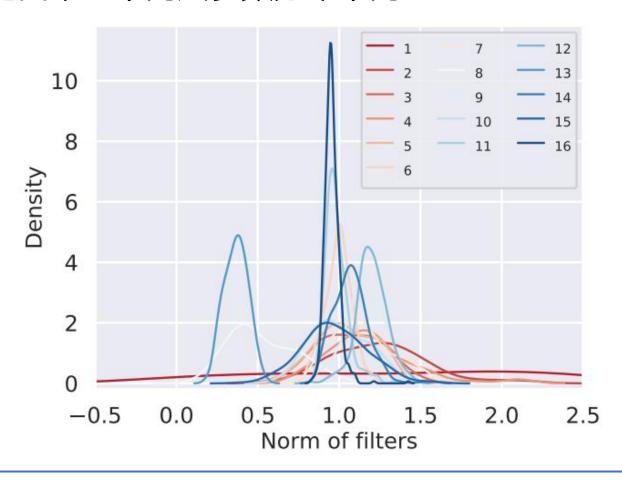


Figure 5. Comparison with *sequentially designed* mixed-precision models searched by AMC and HAQ [5, 12, 36] under latency constraints. Our joint designed model while achieving better accuracy than sequentially designed models.

■■■ 目录 Contents

- 口剪枝粒度
- 口剪枝方法
- 口混合搜索剪枝方法

问题由来:不同层参数分布不同



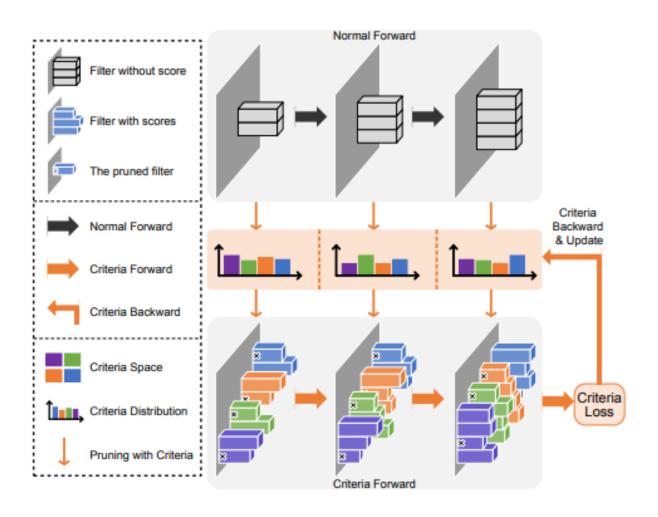
对ResNet18每层权重进行 核密度估计,得到的曲线分 布如左图

使用同一个剪枝标准对不同 分布的参数进行剪枝,就会 出现无法充分剪枝,达不到 最优效果的问题

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., & Yang, Y. (2020). Learning filter pruning criteria for deep convolutional neural networks acceleration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 2009-2018).

相关工作

Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration (LFPC)



中稿情况: CVPR2020

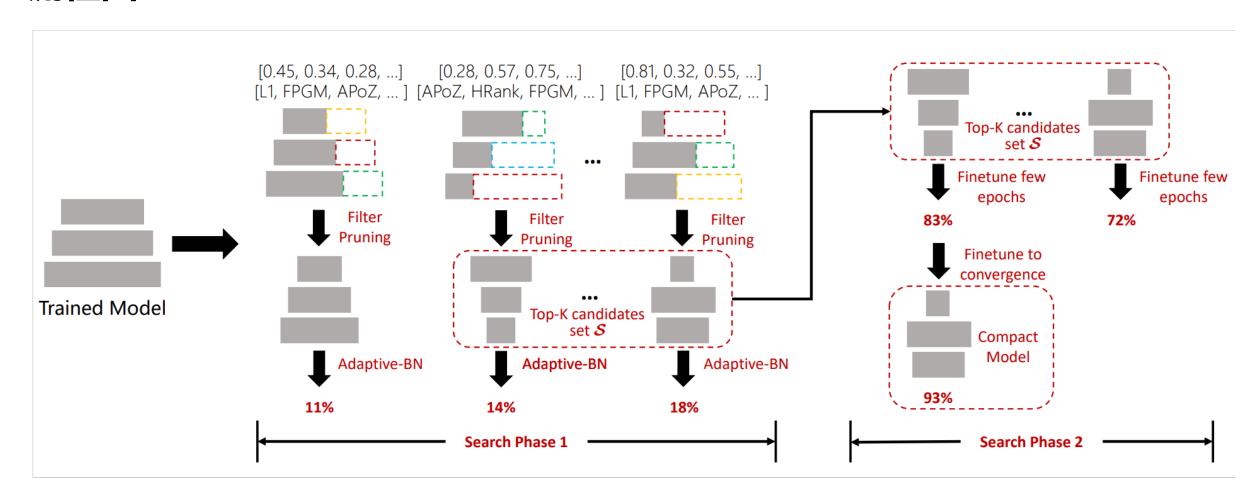
主要贡献:

- 构造**剪枝方法搜索空间**:对每层采用不同的剪枝标准 Criteria
- 使用可微分方法进行该空间内的搜索,效果达到当时的SOTA

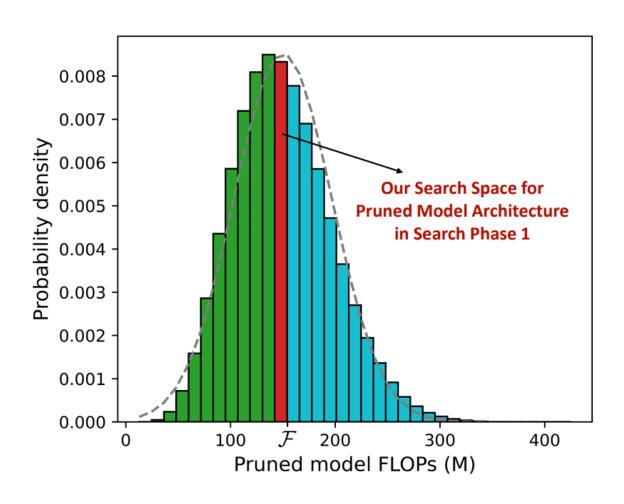
不足:

- 搜索策略:效率低下,搜索开销与预训练 开销在同一个数量级
- · 实验结果:只在ResNet上做实验

流程图



Constraint Search Space



针对问题: 随机采样, 得到的结构

FLOPs分布太广,搜索效率低

方法: 对每次生成的模型结构进行

缩放,将结构缩放到目标区间,并

据此更新结构。

 $P = min(max(P * scale, bound_{lower}), bound_{upper})$

搜索空间设计

与LFPC类似,数个候选剪枝标准

L1 L2 FPGM APOZ

评估策略

从头训练开销巨大不可行 采用 Adaptive BN 快速评估

搜索方法

进化算法,同时搜索:

- 每层剪枝比例
- 每层应用的剪枝方法

种群中的个体包括两部分信息: 比例和方法

0.34	0.25	0.56		0.42
L1	APOZ	FPGM	***	L1

Li, Bailin, et al. "Eagleeye: Fast sub-net evaluation for efficient neural network pruning." *European Conference on Computer Vision*. Springer, Cham, 2020.

实验结果

Method	Top1 Acc	FLOPs	#Params
Base model	94.47%	313.73M	14.98M
ℓ-1 (Li et al. 2016)	93.40%	206.00M	5.40M
SSS (Huang and Wang 2018)	93.02%	183.13M	3.93M
HRank (Lin et al. 2020a)	93.43%	145.61M	2.51M
NSPP (Zhuang et al. 2020)	93.88%	144.21M	2.49M
Hybrid Search ($\mathcal{F} = 150M$)	94.30%	148.90M	4.84M
GAL-0.05 (Lin et al. 2019)	92.03%	189.49M	3.36M
HRank (Lin et al. 2020a)	92.34%	108.61M	2.64M
Hybrid Search ($\mathcal{F} = 100M$)	94.21%	98.90M	2.63M
GAL-0.1 (Lin et al. 2019)	90.73%	171.89M	2.67M
HRank (Lin et al. 2020a)	91.23%	73.70M	1.78M
ABCPruner (Lin et al. 2020c)	93.08%	82.81M	1.67M
DPFPS (Ruan et al. 2021)	93.52%	91.24M	1.00M
Hybrid Search ($\mathcal{F} = 70M$)	93.95%	69.70M	1.53M

Method	Top1 Acc (%)	FLOPs (M)	
MobileNet-Base	70.6	569	
Uniform $(0.75\times)$	68.4	325	
NetAdapt (Yang et al. 2018)	69.1	284	
AMC (He et al. 2018b)	70.5	285	
MetaPruning (Liu et al. 2019)	70.6	281	
Hybrid Search ($\mathcal{F} = 285M$)	70.8	283	
Uniform(0.5×)	63.7	149	
MetaPruning (Liu et al. 2019)	66.1	149	
Hybrid Search ($\mathcal{F} = 150M$)	67.5	150	
Hybrid Search ($\mathcal{F} = 100M$)	65.3	100	
Uniform(0.25×)	50.6	41	
MetaPruning (Liu et al. 2019)	57.2	41	
Hybrid Search ($\mathcal{F} = 50M$)	59.8	49	

Table 3: Top-1 accuracy of VGGNet on CIFAR-10.

Table 5: Pruning results of MobileNet on ImageNet.

实验结果

Model	Method	Top1 Acc (%)	Top5 Acc (%)	FLOPs (M)	Ratio↓
ResNet-18	Base model	69.66	89.08	1824.52	-
	SFP (He et al. 2018a)	67.10	87.78	1061.87	41.8%
	DSA (Ning et al. 2020)	68.61	88.35	1080.12	40.8%
	MiL (Dong et al. 2017)	66.07	86.77	1193.24	34.6%
	FPGM (He et al. 2019)	68.41	89.63	1080.12	40.8%
	ABCPruner-100 (Lin et al. 2020c)	67.80	88.00	968.13	46.9%
	Hybrid Search ($\mathcal{F} = 1000M$)	69.44	88.83	990.90	45.7%
	Base model	73.28	91.45	3679.23	-
	SFP (He et al. 2018a)	71.83	90.33	2167.07	41.1%
ResNet-34	FPGM (He et al. 2019)	72.63	91.08	2167.07	41.1%
Resnet-34	ABCPruner-90 (Lin et al. 2020c)	70.98	90.05	2170.77	41.0%
	DPFPS (Ruan et al. 2021)	72.25	90.80	2170.77	41.0%
	Hybrid Search ($\mathcal{F} = 2000M$)	73.20	91.00	1986.10	46.0%
	Base model	76.01	92.96	4135.70	-
	SFP (He et al. 2018a)	74.61	92.06	2406.98	41.8%
	FPGM (He et al. 2019)	75.59	92.87	2167.07	47.6%
D N-+ 50	ABCPruner-80 (Lin et al. 2020c)	73.86	91.69	2390.43	42.2%
ResNet-50	SRR-GR (Wang, Li, and Wang 2021)	75.11	92.50	1856.62	55.1%
	SCOP (Lin et al. 2020c)	75.26	92.50	1877.29	54.6%
	DPFPS (Ruan et al. 2021)	75.55	92.54	2224.63	46.2%
	Hybrid Search ($\mathcal{F} = 1800M$)	75.74	92.56	1736.20	58.0%

Table 4: Pruning results of ResNet on ImageNet.

消融实验

只采用一种剪枝标准进行搜索的消融实验

Model	\mathbf{c}_i in layers	Top-1 Acc	FLOPs
	L1	93.1%	69.1M
	FPGM	93.3%	69.8M
VGG-16	APoZ	93.7%	69.2M
	HRank	93.7%	68.1M
	Search	94.0%	69.7M

Table 7: Pruning results with different pruning algorithms.

在相同的训练开销下,对不同阶段进行消融实验

Model	Phase 1	Phase 2	Top-1 Acc (%)	FLOPs
MobileNet	× ✓	× ×	62.3 65.5 67.5	144M 147M 150M

Table 8: Pruning results after removing one of the search phase.

Al_paper_collector

A simple, lightweight, easy use pythonic Al Conference paper collector

AAAI

CVPR

ECCV

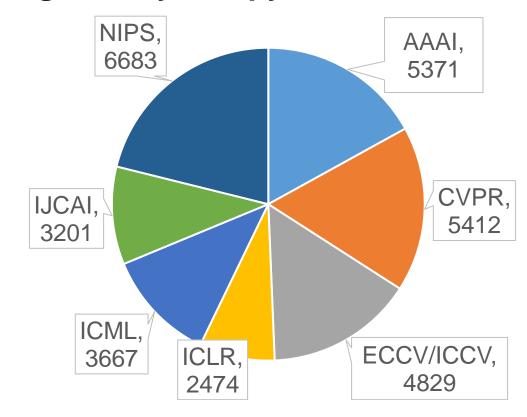
ICCV

ICML

ICLR

IJCAI

NIPS



Repo Link

https://github.com/dercaft/AI_paper_collector

Totally Collect 31637 papers in xlsx/csv file

Derek & 南极洲

扫一扫上面的二维码图案, 加我微信