You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
zouap 569b20752f 更新 'README.md' 6 months ago
db 修正超大图像标注的联网加载资源的Bug及其它部分Bug 9 months ago
doc 将Web页面更新到3.0 6 months ago
jar 发布Jar包 6 months ago
java 增加支持独立的多目标跟踪算法docker接入。 7 months ago
web/labeling/web-dl 将Web页面更新到3.0 6 months ago
LICENSE first commit 11 months ago
README.md 更新 'README.md' 6 months ago

README.md

PLabel V3.0

预计2021年12月发布,增加如下特性:

1、封装所有配置到docker镜像中,用户拉取镜像,启动容器,运行server.sh就可以完成标注软件启动,直接使用。
2、增加文本标注,可以标注实体及实体关系。
3、可以接入用户自己的标注算法或者模型。

有需求的用户,可以在任务”栏创建任务,如果工作量不是很大,可能1、2天之内响应

PLabel V2.0

PLabel发布, 主要是升级mmdetection平台到V2.3.0,重训人车检测模型,提升了检测精度,同时增加自动分割,集成人工标注的主动分类学习功能,标注工具栏中增加一些功能及一些Bug的解决,同时一并发布系统的详细设计文档及详细的系统帮助说明文档,请参见doc目录下文档。

PLabel

半自动标注系统是基于BS架构,纯Web页面操作,由鹏城实验室叶齐祥、曾炜、田永鸿教授团队自主研发,由工程师邹安平维护,集成视频抽帧,目标检测、视频跟踪、ReID分类、人脸检测等算法,实现了对图像,视频的自动标注,并可以对自动算法的结果进行人工标注,最终得到标注结果,同时也可以对视频、图片、医疗(包括dicom文件及病理图像)相关的数据进行人工标注,标注结果支持COCO及VOC格式。支持多人协同标注。 半自动标注系统主要功能有:用户管理,数据集管理,自动标注,人工标注(通用图片、文本实体及实体关系),ReID标注,车流统计,视频标注,医疗CT标注,超大图像标注,模型管理与重训,报表管理。数据标注过程一个非常重要的因素是数据安全,在标注使用中防止数据泄露,采用基于web标注工具是有效避免数据泄露的措施之一。 半自动标注系统以保证性能的情况下最小化人工标注代价为目标,不断提升自动标注效率,减少人工标注和人工参与过程。

Install

新增最简单的方式安装: 下载此docker镜像:https://git.openi.org.cn/attachments/b11fca77-819e-4737-a3c7-056d26b71738
加载镜像 docker load --input pcl_label_hand_v3.tar
运行容器: docker run --name PLabelHand -p 8008:8008 -p 9009:9000 --shm-size 4G -i -t -v /data1/PLabelHand:/data 09dcbf3d1f58 /bin/bash
注意:必需使用8008端口映射,如果要修改,则需要进入docker容器修改nginx下plabel.conf文件中的端口。9009端口用于将容器minio对外暴露,用于基于CPU的自动算法yolov5_auto_label_v1及yolov5_auto_track_v1镜像使用。

进入容器: docker exec -it PLabelHand /bin/bash
运行系统: ./server.sh 再进行回车,一直到出现命令界面。
在web浏览器中输入: http://ip:8008/ 访问标注系统。 初始用户名:LabelSystem01 / pcl123456

接入基于CPU的yolov5自动标注算法,下载此docker镜像:https://git.openi.org.cn/attachments/0bd57910-5f3e-486a-b645-c476b0eb1782
加载镜像:docker load --input yolov5_auto_label_v1.tar
运行容器:docker run --name yolov5_auto_label -p 8009:8009 --shm-size 4G -i -t -v /data1/PLabelHand:/data d4e5baa3ffd1 /bin/bash
切换到javaapp目录下,修改application-runtime.properties 里面的IP地址 192.168.62.129 为自己的IP地址,
然后运行:java -jar labelSystemForDocker.jar
此后在界面上新建自动标注算法,就可以选择Yolov5算法了,如需要修改标注类别,目前默认标注为person,则需要修改application-runtime.properties中的exe_script中的--classes 0中的标注类别,0代表person。

接入基于CPU的yolov5多目标跟踪算法,下载此docker镜像:https://git.openi.org.cn/attachments/6051d5e7-678d-44cd-8dc3-1455205533c7
加载镜像:docker load --input yolov5_auto_track_v1.tar
运行容器:docker run --name yolov5_auto_track_v1 -p 8019:8019 --shm-size 4G -i -t -v /data1/PLabelHand:/data 4b2f8e066e57 /bin/bash
切换到javaapp目录下,修改application-runtime.properties 里面的IP地址 192.168.62.129 为自己的IP地址,
然后运行:java -jar labelSystemForDocker.jar
此后在人工标注及ReID标注界面上选择基于Yolov5的多目标跟踪算法Yolov5 Multi target tracking(Person),如需要修改标注类别,目前默认标注为person,则需要修改application-runtime.properties中的exe_script中的--classes 0中的标注类别,0代表person。

其它安装方式:
参见doc目录下环境搭建word文档,本标注系统将会一直维护下去,有疑问、使用过程发现Bug、或者想要新增功能,都可以直接联系zouap@pcl.ac.cn,或者微信:13927449476 工作日一般会及时回复。

Usage

1、用户管理,只有管理员LabelSystem01帐号可以创建用户,分管理员、标注人员、审核人员三类。 在用户管理中可以对每个标注人员进行分表存储标注数据(适合大批量标注,100W级以上),也可以将所有用户的操作的标注数据都存储在同一张表中。

2、数据集管理
支持视频(需要ffmpeg能支持的格式)、CT影像(.ima,.dcm)、超大图像(.svs,.tiff)、通用图片(常见的图片格式都能支持) 4种类型的数据。视频支持抽帧,抽帧可以指定文件名方式,也支持视频合并,4种类型数据都可以支持预览。视频目前只有mp4格式可以在线预览,其它的视频需要抽帧之后才能预览。

(注:视频及超大图像需要docker镜像的支持)

3、自动标注
自动标注目前集成了人、车的几种开源算法,基于mmdetection平台,搜集所有开源数据集训练得到的目标检测模型,新建自动标注时,需要选择数据集,然后等待自动标注完成后,可以查看标注结果。
自动标注也可以集成开发者的自己的模型,需要开发者在数据库表中插入对应的模型位置及运行脚本,当然模型的输出结果需要与系统读取的数据格式一致。

4、人工标注
人工标注可以基于自动标注的结果,也可以对数据集中的数据进行直接标注,包括点、多边形、矩形三种标注。人工标注以任务的方式存在,可以看到当前标注的进度。
人工标注还支持文本的标注,支持实体及实体关系标注,可以参考帮助文档。
在人工标注页面的按钮中,还可以进行单目标跟踪、多目标跟踪、自动单个图像目标检测。
包括复制、粘贴、上下左右移动等功能按钮。
对于人工标注任务在标注人员标注完成后,还可以转给审核人员进行审核。

5、ReID标注
可以对多个镜头进行ReID标注,在标注页面可以看到多个镜头的ReID标注,大大提升效率,同时查看ReID结果页面会列出所有的ReID标注结果,还可以直接对结果进行修改,删除。也可以对结果进行导出,包括抠图导出,原图导出,标注导出。

6、车流统计
操作MP4格式的视频,可以在视频上对车辆行驶方向进行标注。

7、视频标注
操作MP4格式的视频,可以在视频上对目标进行标注。

8、超大图像标注
对tiff及svs格式的图像进行标注,集成了openseadragon组件,并进行了二次开发,以便可以进行标注。

9、报表管理
对标注人员的工作进行度量。

10、操作日志管理
用户登录、登出日志查看。

11、模型重训
可以基于mmdetection使用用户标注的数据重训人、车的检测模型。

标注请使用chrome浏览器,相关截图可参见doc目录下《半自动标注系统介绍_V1.4》,有疑问可以直接联系zouap@pcl.ac.cn,工作日一般会及时回复。

简介

半自动标注系统是基于BS架构,纯Web页面操作,集成视频抽帧,目标检测、视频跟踪、ReID分类等算法,实现了对图像,视频的自动标注,并可以对自动算法的结果进行人工标注,最终得到标注结果,同时也可以对视频、文本、图片、医疗(包括dicom文件及病理图像)相关的数据进行人工标注,标注结果支持COCO及VOC格式。

JavaScript Roff Manpage Java HTML DirectX 3D File other

贡献者 (1)