|
- #####################################################################################################
- # 继续训练功能:修改训练任务时,若勾选复用上次结果,则可在新训练任务的输出路径中读取到上次结果
- #
- # 示例用法
- # - 增加两个训练参数
- # 'ckpt_save_name' 此次任务的输出文件名,用于保存此次训练的模型文件名称(不带后缀)
- # 'ckpt_load_name' 上一次任务的输出文件名,用于加载上一次输出的模型文件名称(不带后缀),首次训练默认为空,则不读取任何文件
- # - 训练代码中判断 'ckpt_load_name' 是否为空,若不为空,则为继续训练任务
- #####################################################################################################
-
-
- import os
- import argparse
- from config import mnist_cfg as cfg
- from dataset import create_dataset
- from dataset_distributed import create_dataset_parallel
- from lenet import LeNet5
- import mindspore.nn as nn
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore import load_checkpoint, load_param_into_net
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.communication.management import get_rank
-
- from openi import obs_copy_file
- from openi import obs_copy_folder
- from openi import openi_multidataset_to_env
-
- parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
- parser.add_argument('--multi_data_url',
- help='path to training/inference dataset folder',
- default= '[{}]')
-
- parser.add_argument('--train_url',
- help='output folder to save/load',
- default= '')
-
- parser.add_argument(
- '--device_target',
- type=str,
- default="Ascend",
- choices=['Ascend', 'CPU'],
- help='device where the code will be implemented (default: Ascend),if to use the CPU on the Qizhi platform:device_target=CPU')
-
- parser.add_argument('--epoch_size',
- type=int,
- default=5,
- help='Training epochs.')
-
- ### continue task parameters
- parser.add_argument('--ckpt_load_name',
- help='model name to save/load',
- default= '')
-
- parser.add_argument('--ckpt_save_name',
- help='model name to save/load',
- default= 'checkpoint')
-
-
- if __name__ == "__main__":
- args, unknown = parser.parse_known_args()
- data_dir = '/cache/data'
- base_path = '/cache/output'
-
- try:
- if not os.path.exists(data_dir):
- os.makedirs(data_dir)
- if not os.path.exists(base_path):
- os.makedirs(base_path)
- except Exception as e:
- print("path already exists")
-
- openi_multidataset_to_env(args.multi_data_url, data_dir)
-
- device_num = int(os.getenv('RANK_SIZE'))
- if device_num == 1:
- ds_train = create_dataset(os.path.join(data_dir + "/MNISTData", "train"), cfg.batch_size)
- if device_num > 1:
- ds_train = create_dataset_parallel(os.path.join(data_dir + "/MNISTData", "train"), cfg.batch_size)
- if ds_train.get_dataset_size() == 0:
- raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
-
- network = LeNet5(cfg.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
-
- ### 继续训练模型加载
- if args.ckpt_load_name:
- obs_copy_folder(args.train_url, base_path)
- load_path = "{}/{}.ckpt".format(base_path,args.ckpt_load_name)
- param_dict = load_checkpoint(load_path)
- load_param_into_net(network, param_dict)
- print("Successfully load ckpt file:{}, saved_net_work:{}".format(load_path,param_dict))
- ### 保存已有模型名避免重复回传结果
- outputFiles = os.listdir(base_path)
-
- if args.device_target != "Ascend":
- model = Model(network,
- net_loss,
- net_opt,
- metrics={"accuracy": Accuracy()})
- else:
- model = Model(network,
- net_loss,
- net_opt,
- metrics={"accuracy": Accuracy()},
- amp_level="O2")
-
- config_ck = CheckpointConfig(
- save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- #Note that this method saves the model file on each card. You need to specify the save path on each card.
- # In this example, get_rank() is added to distinguish different paths.
- if device_num == 1:
- save_path = base_path + "/"
- if device_num > 1:
- save_path = base_path + "/" + str(get_rank()) + "/"
- ckpoint_cb = ModelCheckpoint(prefix=args.ckpt_save_name,
- directory=save_path,
- config=config_ck)
- print("============== Starting Training ==============")
- epoch_size = cfg['epoch_size']
- if (args.epoch_size):
- epoch_size = args.epoch_size
- print('epoch_size is: ', epoch_size)
- model.train(epoch_size,
- ds_train,
- callbacks=[time_cb, ckpoint_cb,
- LossMonitor()])
-
- ### 将训练容器中的新输出模型 回传到启智社区
- outputFilesNew = os.listdir(base_path)
- new_models = [i for i in outputFilesNew if i not in outputFiles]
- for n in new_models:
- ckpt_url = base_path + "/" + n
- obs_ckpt_url = args.train_url + "/" + n
- obs_copy_file(ckpt_url, obs_ckpt_url)
|